నైరూప్య

Classification of Documents in E-Learning Using Multidimensional Latent Semantic Analysis

R.Archana, M.Ravichandran

In this paper we consider the problem of dimensionality reduction techniques. Two techniques such as Independent Component analysis (ICA) and multidimensional latent semantic analysis (MDLSA) are proposed. A new document analysis method named multidimensional latent semantic analysis (MDLSA) which resolves the problem of in-depth document analysis, mines local information from a document efficiently with respect to term associations and spatial distributions. The MDLSA first partitions each document into paragraphs and later builds a term ―affinity‖ graph. Each element of this graph represents the frequency of term co-occurrence in a paragraph. We then use Independent Component Analysis (ICA) which finds a linear representation of nongaussian data such that the components are statistically independent. Thus these two techniques are examined in retrieving and classifying the e-learning documents. It is also proven by experimental verifications that the proposed technique outperforms current algorithms with respect to accuracy and computational efficiency.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఇండెక్స్ చేయబడింది

Academic Keys
ResearchBible
CiteFactor
కాస్మోస్ IF
RefSeek
హమ్దార్డ్ విశ్వవిద్యాలయం
వరల్డ్ కేటలాగ్ ఆఫ్ సైంటిఫిక్ జర్నల్స్
విద్వాంసుడు
ఇంటర్నేషనల్ ఇన్నోవేటివ్ జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్ (IIJIF)
ఇంటర్నేషనల్ ఇన్స్టిట్యూట్ ఆఫ్ ఆర్గనైజ్డ్ రీసెర్చ్ (I2OR)
కాస్మోస్

మరిన్ని చూడండి