నైరూప్య

Entity Recognition in a Web Based Join Structure

J.Kavitha M.Tech, A.Pasca Mary

Given a document, the task of Entity Recognition is to identify predefined entities such as person names, products, or locations in this document. With a potentially large dictionary, this entity recognition problem transforms into a Dictionary-based Membership Checking problem called Approximate Membership Extraction (AME) which aims at finding all possible substrings from a document that match any reference in the given dictionary. It generates many redundant matched substrings, thus rendering AME unsuitable for real-world tasks based on entity extraction. Approximate Membership Localization (AML) only aims at locating true mentions of clean references. An important observation is as follows: in real world situations, one word position within a document generally belongs to only one reference-matched substring, meaning that the true matched substrings should not overlap. Therefore, AML targets at locating non-overlapped substrings in a given document that can approximately match any clean reference. In the event where several substrings overlap, only the one with the highest similarity to a clean reference qualifies as a result. Web-based join Structure which is a search-based approach joining two tables using entity recognition from web documents and it is a typical real-world application greatly relying on membership checking. Membership checking is performed by using correlation, Inverse Document Frequency (IDF), Jaccard Similarity, P-Pruning Technique.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఇండెక్స్ చేయబడింది

Index Copernicus
Academic Keys
CiteFactor
కాస్మోస్ IF
RefSeek
హమ్దార్డ్ విశ్వవిద్యాలయం
వరల్డ్ కేటలాగ్ ఆఫ్ సైంటిఫిక్ జర్నల్స్
ఇంటర్నేషనల్ ఇన్నోవేటివ్ జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్ (IIJIF)
ఇంటర్నేషనల్ ఇన్స్టిట్యూట్ ఆఫ్ ఆర్గనైజ్డ్ రీసెర్చ్ (I2OR)
కాస్మోస్

మరిన్ని చూడండి