నైరూప్య

Optimum and Centralized Detection for Statistical MIMO Radar

Samiran Pramanik, Nirmalendu Bikas Sinha, C.K. Sarkar

Multiple Input Multiple Output (MIMO) radar is a new emerging radar technique developed recently. MIMO radar can exploit the spatial diversity of target scatterers in a variety of ways to extend the radar’s performance. This paper introduces the statistical MIMO radar concept and the method of receiving signal processing also is presented. The fundamental difference between statistical MIMO and other radar array systems is that the latter seek to maximize the coherent processing gain, while statistical MIMO radar capitalizes on the diversity of target scattering to improve radar performance. Compared to traditional phased-array radar, statistical MIMO radar can offer better parameter identifiability and higher resolution, better sensitivity to slowly moving targets, enable the direct applicability of adaptive techniques for effective interference and jamming suppression, and allow for much flexibility for transmit beam-pattern design and waveform optimization. Reaping the full benefit of the superior performance enabled by the statistical MIMO radar requires a novel design of its receive filters to minimize the impact of scatterers in nearby range bins on the received signals from the range bin of interest to minimize range compression problem by spacing the antenna elements at the transmitter and at the receiver such that the target angular spread is manifested. In this paper, we focus on the application of the target spatial diversity to improve detection performance. The optimal detector in the Neyman-Pearson sense is developed and analyzed for the statistical MIMO radar in case of stationary target. The performance improvement that can be achieved by the use of angular diversity in statistical MIMO radar is investigated. The results show that at high SNR values statistical MIMO radar provides great improvements of target detection performance over other types of array radars. Whereas, at low SNR values, phased array radar performs better than statistical MIMO radar. Finally, we present a number of numerical examples to demonstrate the effectiveness of the proposed approaches. Therefore, statistical MIMO radar can be applied to enhance radar resolution by allowing the measurement of one scatterer at a time.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

జర్నల్ ముఖ్యాంశాలు

అడాప్టివ్ సిగ్నల్ ప్రాసెసింగ్ అసమకాలిక యంత్రాలు ఆప్టికల్ కమ్యూనికేషన్ ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ మరియు ఎలక్ట్రికల్ ఇంజనీరింగ్‌కి అప్లికేషన్ ఎలక్ట్రానిక్ మెటీరియల్స్ ఎలక్ట్రానిక్స్‌లో ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ ఎలక్ట్రిక్ డ్రైవర్లు మరియు అప్లికేషన్ డిజిటల్ సిగ్నల్ ప్రాసెసింగ్ నియంత్రణ సిద్ధాంతం మరియు అప్లికేషన్ నిర్ధారణ మరియు సెన్సింగ్ సిస్టమ్స్ పవర్ ఎలక్ట్రానిక్ కన్వర్టర్ల విశ్లేషణ ప్రాథమిక ఎలక్ట్రికల్ ఇంజనీరింగ్ బయో ఎలక్ట్రానిక్స్ లోడ్లు మరియు ఎలక్ట్రికల్ పవర్ కన్వర్టర్ యొక్క ఎలక్ట్రికల్ మరియు దోపిడీ లక్షణాలు విద్యుత్ నాణ్యత మరియు సరఫరా ఖర్చు యొక్క ఆర్థిక అంశాలు విద్యుత్ యంత్రాలు విద్యుదయస్కాంత ట్రాన్సియెంట్స్ ప్రోగ్రామ్‌లు (EMTP) వైర్లెస్ నెట్వర్కింగ్ శాటిలైట్ కమ్యూనికేషన్ సెమీకండక్టర్ టెక్నాలజీ

ఇండెక్స్ చేయబడింది

Academic Keys
ResearchBible
CiteFactor
కాస్మోస్ IF
RefSeek
హమ్దార్డ్ విశ్వవిద్యాలయం
విద్వాంసుడు
ఇంటర్నేషనల్ ఇన్నోవేటివ్ జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్ (IIJIF)
ఇంటర్నేషనల్ ఇన్స్టిట్యూట్ ఆఫ్ ఆర్గనైజ్డ్ రీసెర్చ్ (I2OR)
కాస్మోస్

మరిన్ని చూడండి