నైరూప్య

Performance of Alternating Direction Method of Multipliers(ADMM) Based on Deconvolving Images with Unknown Boundaries

T.Nithya, Dr.S.Leela Lakshmi

Deconvolution is an ill-posed inverse problem, it can be solved by imposing some form of regularization(prior knowledge) on the unknown blur and original image. This formulation allows both frame-based or total-variation regularization. In several imaging inverse problems, ADMM is an efficient optimization tool that achieves state-of-the-art speed, by splitting the underlying problem into simpler, efficiently solvable sub-problems. In deonvolution the observation operator is circulant under periodic boundary conditions, one of these sub-problems requires a matrix inversion, which can be efficiently computable(via the FFT). we show that the resulting algorithms inherit the convergence guarantees of ADMM. These methods are experimentally illustrated using frame-based regularization; the results show the advantage of our approach over the use of the ―edge taper‖ function (in terms of improvement in SNR).

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఇండెక్స్ చేయబడింది

Index Copernicus
Academic Keys
CiteFactor
కాస్మోస్ IF
RefSeek
హమ్దార్డ్ విశ్వవిద్యాలయం
వరల్డ్ కేటలాగ్ ఆఫ్ సైంటిఫిక్ జర్నల్స్
ఇంటర్నేషనల్ ఇన్నోవేటివ్ జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్ (IIJIF)
ఇంటర్నేషనల్ ఇన్స్టిట్యూట్ ఆఫ్ ఆర్గనైజ్డ్ రీసెర్చ్ (I2OR)
కాస్మోస్

మరిన్ని చూడండి